Blogger Tips and TricksLatest Tips And TricksBlogger Tricks

K-means clustering implementation in weka tool

Procedure:
Step1: Open the data file in Weka Explorer. It is presumed that the required data fields have been discretized. In this example it is age attribute.
Step2: Clicking on the associate tab will bring up the interface for association rule algorithm.
Step3: We will use K-means algorithm. This is the default algorithm.

Step4: Inorder to change the parameters for the run (example support, confidence etc) we click on the text box immediately to the right of the choose button.







Scheme:       weka.clusterers.SimpleKMeans -init 0 -max-candidates 100 -periodic-pruning 10000 -min-density 2.0 -t1 -1.25 -t2 -1.0 -N 3 -A "weka.core.EuclideanDistance -R first-last" -I 500 -num-slots 1 -S 10
Relation:     labor-neg-data
Instances:    57
Attributes:   17
              duration
              wage-increase-first-year
              wage-increase-second-year
              wage-increase-third-year
              cost-of-living-adjustment
              working-hours
              pension
              standby-pay
              shift-differential
              education-allowance
              statutory-holidays
              vacation
              longterm-disability-assistance
              contribution-to-dental-plan
              bereavement-assistance
              contribution-to-health-plan
              class
Test mode:    evaluate on training data
=== Clustering model (full training set) ===
kMeans
======
Number of iterations: 3
Within cluster sum of squared errors: 119.5224194214812

Initial starting points (random):

Cluster 0: 1,5.7,3.971739,3.913333,none,40,empl_contr,7.444444,4,no,11,generous,yes,full,yes,full,good
Cluster 1: 1,2,3.971739,3.913333,tc,40,ret_allw,4,0,no,11,generous,no,none,no,none,bad
Cluster 2: 2,2.5,3,3.913333,tcf,40,none,7.444444,4.870968,no,11,below_average,yes,half,yes,full,bad

Missing values globally replaced with mean/mode

Final cluster centroids:
                                                    Cluster#
Attribute                            Full Data             0             1             2
                                        (57.0)        (36.0)         (5.0)        (16.0)
========================================================================================
duration                                2.1607        2.2267           1.4          2.25
wage-increase-first-year                3.8036        4.4695           3.2        2.4938
wage-increase-second-year               3.9717        4.4175         4.183        2.9027
wage-increase-third-year                3.9133        4.1093        3.9133        3.4725
cost-of-living-adjustment                 none          none          none          none
working-hours                          38.0392       37.4766       39.2078         38.94
pension                             empl_contr    empl_contr          none    empl_contr
standby-pay                             7.4444        7.9938        6.7556        6.4236
shift-differential                       4.871        5.4776        3.1484        4.0444
education-allowance                         no            no            no            no
statutory-holidays                     11.0943       11.4801          10.6       10.3809
vacation                         below_average      generous below_average below_average
longterm-disability-assistance             yes           yes            no           yes
contribution-to-dental-plan               half          half          none          half
bereavement-assistance                     yes           yes            no           yes
contribution-to-health-plan               full          full          none          full
class                                     good          good           bad           bad

Time taken to build model (full training data) : 0.01 seconds

=== Model and evaluation on training set ===
Clustered Instances

0      36 ( 63%)
1       5 (  9%)
2      16 ( 28%)




Scheme:       weka.clusterers.SimpleKMeans -init 0 -max-candidates 100 -periodic-pruning 10000 -min-density 2.0 -t1 -1.25 -t2 -1.0 -N 2 -A "weka.core.EuclideanDistance -R first-last" -I 500 -num-slots 1 -S 10
Relation:     labor-neg-data
Instances:    57
Attributes:   17
              duration
              wage-increase-first-year
              wage-increase-second-year
              wage-increase-third-year
              cost-of-living-adjustment
              working-hours
              pension
              standby-pay
              shift-differential
              education-allowance
              statutory-holidays
              vacation
              longterm-disability-assistance
              contribution-to-dental-plan
              bereavement-assistance
              class
Ignored:
              contribution-to-health-plan
Test mode:    Classes to clusters evaluation on training data
=== Clustering model (full training set) ===

kMeans
======

Number of iterations: 5
Within cluster sum of squared errors: 122.05464734126849

Initial starting points (random):

Cluster 0: 1,5.7,3.971739,3.913333,none,40,empl_contr,7.444444,4,no,11,generous,yes,full,yes,good
Cluster 1: 1,2,3.971739,3.913333,tc,40,ret_allw,4,0,no,11,generous,no,none,no,bad

Missing values globally replaced with mean/mode

Final cluster centroids:
                                                    Cluster#
Attribute                            Full Data             0             1
                                        (57.0)        (43.0)        (14.0)
==========================================================================
duration                                2.1607         2.213             2
wage-increase-first-year                3.8036        4.2024        2.5786
wage-increase-second-year               3.9717         4.221        3.2062
wage-increase-third-year                3.9133        4.0329        3.5462
cost-of-living-adjustment                 none          none          none
working-hours                          38.0392       37.6557       39.2171
pension                             empl_contr    empl_contr          none
standby-pay                             7.4444        7.7778        6.4206
shift-differential                       4.871        5.2018        3.8548
education-allowance                         no            no            no
statutory-holidays                     11.0943       11.2878          10.5
vacation                         below_average below_average below_average
longterm-disability-assistance             yes           yes           yes
contribution-to-dental-plan               half          half          none
bereavement-assistance                     yes           yes           yes
class                                     good          good           bad

Time taken to build model (full training data) : 0 seconds
=== Model and evaluation on training set ===
Clustered Instances

0      43 ( 75%)
1      14 ( 25%)

Class attribute: contribution-to-health-plan
Classes to Clusters:

  0  1  <-- assigned to cluster
 20  8 | none
  9  0 | half
 14  6 | full

Cluster 0 <-- none
Cluster 1 <-- full

Incorrectly clustered instances :           31.0        54.386  %


DATA MINING LABORATORY- IT6711

Hardware Requirements
   RAM Memory -2 GB or more
   Intel Pentium 4 or AMD Athlon 2 GHz (or faster)
   1 GB (or more) available hard disk space

Software Requirements
         SQL SERVER 2008,WEKA TOOL,JDK 1.8



EXPERIMENTS: 

1. Creation of a Data Warehouse.
8. Support Vector Machines.
9. Applications of classification for web mining.

10. Case Study on Text Mining or any commercial application.

FP-Growth Algorithm implementation in weka tool

Procedure:
Step1: Open the data file in Weka Explorer. It is presumed that the required data fields have been discretized. In this example it is age attribute.
Step2: Clicking on the associate tab will bring up the interface for association rule algorithm.
Step3: We will use FP-Growth algorithm. This is the default algorithm.
Step4: Inorder to change the parameters for the run (example support, confidence etc) we click on the text box immediately to the right of the choose button.
Data set:
Shopping.arff
@relation shopping
@attribute milk{yes,no}
@attribute bread{yes,no}
@attribute honey{yes,no}
@attribute ghee{yes,no}
@attribute jam{yes,no}
@data
yes,yes,no,no,yes
no,yes,no,yes,no
no,yes,yes,no,no
yes,yes,no,yes,no
yes,no,yes,no,no
no,yes,yes,no,no
yes,no,yes,no,no
yes,yes,yes,no,yes

yes,yes,yes,no,no





Apriori Algorithm implementation in weka tool

Procedure:
Step1: Open the data file in Weka Explorer. It is presumed that the required data fields have been discretized. In this example it is age attribute.
Step2: Clicking on the associate tab will bring up the interface for association rule algorithm.
Step3: We will use apriori algorithm. This is the default algorithm.
Step4: Inorder to change the parameters for the run (example support, confidence etc) we click on the text box immediately to the right of the choose button.
Data set:
Shopping.arff
@relation shopping
@attribute milk{yes,no}
@attribute bread{yes,no}
@attribute honey{yes,no}
@attribute ghee{yes,no}
@attribute jam{yes,no}
@data
yes,yes,no,no,yes
no,yes,no,yes,no
no,yes,yes,no,no
yes,yes,no,yes,no
yes,no,yes,no,no
no,yes,yes,no,no
yes,no,yes,no,no
yes,yes,yes,no,yes

yes,yes,yes,no,no






Flag Counter