Showing posts with label LAB MANUAL. Show all posts
Showing posts with label LAB MANUAL. Show all posts
K-means clustering implementation in weka tool
Procedure:
Step1: Open the data file in Weka Explorer. It is presumed that the
required data fields have been discretized. In this example it is age
attribute.
Step2: Clicking on the associate tab will bring up the interface for
association rule algorithm.
Step3: We will use K-means algorithm. This is the default algorithm.
Step4:
Inorder to change the parameters for the run (example support, confidence etc)
we click on the text box immediately to the right of the choose button.
Scheme: weka.clusterers.SimpleKMeans -init 0
-max-candidates 100 -periodic-pruning 10000 -min-density 2.0 -t1 -1.25 -t2 -1.0
-N 3 -A "weka.core.EuclideanDistance -R first-last" -I 500 -num-slots
1 -S 10
Relation: labor-neg-data
Instances: 57
Attributes: 17
duration
wage-increase-first-year
wage-increase-second-year
wage-increase-third-year
cost-of-living-adjustment
working-hours
pension
standby-pay
shift-differential
education-allowance
statutory-holidays
vacation
longterm-disability-assistance
contribution-to-dental-plan
bereavement-assistance
contribution-to-health-plan
class
Test mode: evaluate on training data
=== Clustering model
(full training set) ===
kMeans
======
Number of iterations: 3
Within cluster sum of
squared errors: 119.5224194214812
Initial starting points
(random):
Cluster 0:
1,5.7,3.971739,3.913333,none,40,empl_contr,7.444444,4,no,11,generous,yes,full,yes,full,good
Cluster 1:
1,2,3.971739,3.913333,tc,40,ret_allw,4,0,no,11,generous,no,none,no,none,bad
Cluster 2:
2,2.5,3,3.913333,tcf,40,none,7.444444,4.870968,no,11,below_average,yes,half,yes,full,bad
Missing values globally
replaced with mean/mode
Final cluster
centroids:
Cluster#
Attribute Full Data 0 1 2
(57.0) (36.0) (5.0) (16.0)
========================================================================================
duration 2.1607
2.2267 1.4 2.25
wage-increase-first-year 3.8036 4.4695 3.2 2.4938
wage-increase-second-year 3.9717 4.4175 4.183 2.9027
wage-increase-third-year 3.9133 4.1093 3.9133 3.4725
cost-of-living-adjustment none none none none
working-hours 38.0392 37.4766 39.2078 38.94
pension empl_contr empl_contr none empl_contr
standby-pay 7.4444 7.9938 6.7556 6.4236
shift-differential 4.871 5.4776 3.1484 4.0444
education-allowance no no no no
statutory-holidays 11.0943 11.4801 10.6 10.3809
vacation below_average generous below_average below_average
longterm-disability-assistance yes yes no yes
contribution-to-dental-plan half half none half
bereavement-assistance yes yes no
yes
contribution-to-health-plan full full none full
class good good bad bad
Time taken to build
model (full training data) : 0.01 seconds
=== Model and
evaluation on training set ===
Clustered Instances
0 36 ( 63%)
1 5 (
9%)
2 16 ( 28%)
Scheme: weka.clusterers.SimpleKMeans -init 0
-max-candidates 100 -periodic-pruning 10000 -min-density 2.0 -t1 -1.25 -t2 -1.0
-N 2 -A "weka.core.EuclideanDistance -R first-last" -I 500 -num-slots
1 -S 10
Relation: labor-neg-data
Instances: 57
Attributes: 17
duration
wage-increase-first-year
wage-increase-second-year
wage-increase-third-year
cost-of-living-adjustment
working-hours
pension
standby-pay
shift-differential
education-allowance
statutory-holidays
vacation
longterm-disability-assistance
contribution-to-dental-plan
bereavement-assistance
class
Ignored:
contribution-to-health-plan
Test mode: Classes to clusters evaluation on training
data
=== Clustering model (full
training set) ===
kMeans
======
Number of iterations: 5
Within cluster sum of squared
errors: 122.05464734126849
Initial starting points (random):
Cluster 0: 1,5.7,3.971739,3.913333,none,40,empl_contr,7.444444,4,no,11,generous,yes,full,yes,good
Cluster 1:
1,2,3.971739,3.913333,tc,40,ret_allw,4,0,no,11,generous,no,none,no,bad
Missing values globally replaced
with mean/mode
Final cluster centroids:
Cluster#
Attribute Full Data 0 1
(57.0) (43.0) (14.0)
==========================================================================
duration 2.1607 2.213 2
wage-increase-first-year 3.8036 4.2024 2.5786
wage-increase-second-year 3.9717 4.221 3.2062
wage-increase-third-year 3.9133 4.0329 3.5462
cost-of-living-adjustment none none none
working-hours 38.0392 37.6557 39.2171
pension empl_contr empl_contr
none
standby-pay 7.4444 7.7778 6.4206
shift-differential 4.871 5.2018 3.8548
education-allowance no no no
statutory-holidays 11.0943 11.2878 10.5
vacation below_average
below_average below_average
longterm-disability-assistance yes yes yes
contribution-to-dental-plan half half none
bereavement-assistance yes yes yes
class good good bad
Time taken to build model (full
training data) : 0 seconds
=== Model and evaluation on
training set ===
Clustered Instances
0 43 ( 75%)
1 14 ( 25%)
Class attribute:
contribution-to-health-plan
Classes to Clusters:
0 1 <-- assigned to cluster
20 8 |
none
9 0 | half
14 6 |
full
Cluster 0 <-- none
Cluster 1 <-- full
Incorrectly clustered instances : 31.0
54.386 %
DATA MINING LABORATORY- IT6711
Hardware Requirements
RAM Memory -2 GB or more
Intel Pentium 4 or AMD Athlon 2 GHz (or faster)
1 GB (or more) available hard disk space
Software Requirements
SQL SERVER 2008,WEKA TOOL,JDK 1.8
RAM Memory -2 GB or more
Intel Pentium 4 or AMD Athlon 2 GHz (or faster)
1 GB (or more) available hard disk space
Software Requirements
SQL SERVER 2008,WEKA TOOL,JDK 1.8
EXPERIMENTS:
1. Creation of a Data Warehouse.
8. Support Vector Machines.
9. Applications of classification for web
mining.
10. Case Study on Text Mining
or any commercial application.
FP-Growth Algorithm implementation in weka tool
Procedure:
Step1: Open the data file in Weka Explorer. It is presumed that the
required data fields have been discretized. In this example it is age
attribute.
Step2: Clicking on the associate tab will bring up the interface for
association rule algorithm.
Step3: We will use FP-Growth algorithm. This is the default
algorithm.
Step4:
Inorder to change the parameters for the run (example support, confidence etc)
we click on the text box immediately to the right of the choose button.
Data set:
Shopping.arff
@relation shopping
@attribute milk{yes,no}
@attribute bread{yes,no}
@attribute honey{yes,no}
@attribute ghee{yes,no}
@attribute jam{yes,no}
@data
yes,yes,no,no,yes
no,yes,no,yes,no
no,yes,yes,no,no
yes,yes,no,yes,no
yes,no,yes,no,no
no,yes,yes,no,no
yes,no,yes,no,no
yes,yes,yes,no,yes
yes,yes,yes,no,no
Apriori Algorithm implementation in weka tool
Procedure:
Step1: Open the data file in Weka Explorer. It is presumed that the
required data fields have been discretized. In this example it is age
attribute.
Step2: Clicking on the associate tab will bring up the interface for
association rule algorithm.
Step3: We will use apriori algorithm. This is the default algorithm.
Step4:
Inorder to change the parameters for the run (example support, confidence etc)
we click on the text box immediately to the right of the choose button.
Data set:
Shopping.arff
@relation shopping
@attribute milk{yes,no}
@attribute bread{yes,no}
@attribute honey{yes,no}
@attribute ghee{yes,no}
@attribute jam{yes,no}
@data
yes,yes,no,no,yes
no,yes,no,yes,no
no,yes,yes,no,no
yes,yes,no,yes,no
yes,no,yes,no,no
no,yes,yes,no,no
yes,no,yes,no,no
yes,yes,yes,no,yes
yes,yes,yes,no,no
SECURITY LABORATORY CS6711
Hi this is our second lab manual from gr-solution.The first lab manual for Mobile Application Development lab has been used more than hundred colleges in tamilnadu and Andra Pradesh.We thank all the buyer and we also get lot of good feedback.
Hardware Requirements
RAM Memory -2 GB or more
Intel Pentium 4 or AMD Athlon 2 GHz (or faster)
1 GB (or more) available hard disk space
Software Requirements
Java Runtime Environment 1.6 or above
GnuPG,KF sensor,Net Strumbler,snort
Lab manual features
*A complete Lab Manual with pdf contain source code,Procedure,software installation procedure and also software for all experiment.
*Step by step procedure to install and execute all the programs.
*Anna University Latest Sylabus.
*Easy to execute all the experiment .
*Step by step procedure is available with the manual.So that easily Run the experiment without the help of other.
A complete Lab Manual with source code for all experiment.
LabManual cost details
LAB MANUAL DVD(Rs 1000)
The labmanual with dvd it includes all experiment in pdf,software and installation procedure.The labmanul cost RS1000.The dvd will be reach you with in one or two days.
LAB MANUAL SOFT COPY(Rs 700)
The softcopy of lab manual is availabe via email.It includes all experiment in pdf,installation procedure.The labmanual cost RS700.The email will reach you shortly after payment.
Payment method:
The payment has be made to the following bank account.After payment contact as we will send our lab manual.
contact details:
Bank Account Details:
EXPERIMENTS
1)Implement the following SUBSTITUTION & TRANSPOSITION TECHNIQUES concepts:
a) Caesar Cipher
Hardware Requirements
RAM Memory -2 GB or more
Intel Pentium 4 or AMD Athlon 2 GHz (or faster)
1 GB (or more) available hard disk space
Software Requirements
Java Runtime Environment 1.6 or above
GnuPG,KF sensor,Net Strumbler,snort
Lab manual features
*A complete Lab Manual with pdf contain source code,Procedure,software installation procedure and also software for all experiment.
*Step by step procedure to install and execute all the programs.
*Anna University Latest Sylabus.
*Easy to execute all the experiment .
*Step by step procedure is available with the manual.So that easily Run the experiment without the help of other.
A complete Lab Manual with source code for all experiment.
LabManual cost details
LAB MANUAL DVD(Rs 1000)
The labmanual with dvd it includes all experiment in pdf,software and installation procedure.The labmanul cost RS1000.The dvd will be reach you with in one or two days.
LAB MANUAL SOFT COPY(Rs 700)
The softcopy of lab manual is availabe via email.It includes all experiment in pdf,installation procedure.The labmanual cost RS700.The email will reach you shortly after payment.
Payment method:
The payment has be made to the following bank account.After payment contact as we will send our lab manual.
contact details:
CELL:8344790950
EMAIL:hitechguil@gmail.com
Bank Account Details:
BANK NAME :STATE BANK OF INDIA
ACCOUNT NO:20222847933
ACCOUNT HOLDER NAME:P GUILBERT RAJ
IFSC CODE:SBIN0010501
EXPERIMENTS
1)Implement the following SUBSTITUTION & TRANSPOSITION TECHNIQUES concepts:
a) Caesar Cipher
c) Hill Cipher
Implement the SIGNATURE SCHEME - Digital Signature Standard in java
PROGRAM CODE:
TestDigitalSignature.java
SignatueUtil.java
OUTPUT:
SIGNATURE
TestDigitalSignature.java
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.Signature;
//import PublicKeyUtil.*;
//import SignatureUtil.*;
public class TestDigitalSignature {
public static void main(String args[]) throws Exception {
String file = "emp.txt";
/* Public key stored in this file */
String publicKeyFile = "publicKey.txt";
/* Signature of given file stored here */
String signatureFile = "siganture.txt";
/* Signature algorithm to get Signature instance */
String sigAlgorithm = "SHA1withDSA";
/* generate public and private keys */
KeyPair keyPair = PublicKeyUtil.getKeyPair("DSA");
PublicKey publicKey = keyPair.getPublic();
PrivateKey privateKey = keyPair.getPrivate();
/* Generate signature for given file */
byte signature[] = SignatureUtil.getSignature(file, privateKey,
sigAlgorithm);
/* Save public key */
PublicKeyUtil.saveKey(publicKey, publicKeyFile);
/* Save signature */
SignatureUtil.saveSignature(signatureFile, signature);
// Verify Signature
/* Read public key from file */
byte[] pubKeyBytes = PublicKeyUtil.readKeyFromFile(publicKeyFile);
/* Convert publick key bytes into PublicKey object */
PublicKey pubKey = PublicKeyUtil.convertArrayToPubKey(pubKeyBytes,
"DSA");
/* Read signature from file */
byte[] receivedSignature = SignatureUtil
.readSignatureFromFile(signatureFile);
/* Verify signature */
Signature verifySignature = Signature.getInstance(sigAlgorithm);
/* initialize signature object */
verifySignature.initVerify(pubKey);
/* Feed data */
SignatureUtil.feedData(verifySignature, file);
/* Verify signature */
boolean isAuthenticated = verifySignature.verify(receivedSignature);
if (isAuthenticated) {
System.out.println("Data is authenticated");
} else {
System.out.println("Data is not from expected sender");
}
}
}
PublicKeyUtil.javaimport java.security.PrivateKey;
import java.security.PublicKey;
import java.security.Signature;
//import PublicKeyUtil.*;
//import SignatureUtil.*;
public class TestDigitalSignature {
public static void main(String args[]) throws Exception {
String file = "emp.txt";
/* Public key stored in this file */
String publicKeyFile = "publicKey.txt";
/* Signature of given file stored here */
String signatureFile = "siganture.txt";
/* Signature algorithm to get Signature instance */
String sigAlgorithm = "SHA1withDSA";
/* generate public and private keys */
KeyPair keyPair = PublicKeyUtil.getKeyPair("DSA");
PublicKey publicKey = keyPair.getPublic();
PrivateKey privateKey = keyPair.getPrivate();
/* Generate signature for given file */
byte signature[] = SignatureUtil.getSignature(file, privateKey,
sigAlgorithm);
/* Save public key */
PublicKeyUtil.saveKey(publicKey, publicKeyFile);
/* Save signature */
SignatureUtil.saveSignature(signatureFile, signature);
// Verify Signature
/* Read public key from file */
byte[] pubKeyBytes = PublicKeyUtil.readKeyFromFile(publicKeyFile);
/* Convert publick key bytes into PublicKey object */
PublicKey pubKey = PublicKeyUtil.convertArrayToPubKey(pubKeyBytes,
"DSA");
/* Read signature from file */
byte[] receivedSignature = SignatureUtil
.readSignatureFromFile(signatureFile);
/* Verify signature */
Signature verifySignature = Signature.getInstance(sigAlgorithm);
/* initialize signature object */
verifySignature.initVerify(pubKey);
/* Feed data */
SignatureUtil.feedData(verifySignature, file);
/* Verify signature */
boolean isAuthenticated = verifySignature.verify(receivedSignature);
if (isAuthenticated) {
System.out.println("Data is authenticated");
} else {
System.out.println("Data is not from expected sender");
}
}
}
FOR FULL PORGRAM and lab manual
CONTACT:
CELL:9789697608
9566627095
EMAIL:hitechguil@gmail.com
FOR FULL PORGRAM and lab manual
CONTACT:
CELL:9789697608
9566627095
EMAIL:hitechguil@gmail.com
PUBLIC KEY
SIGNATURE
Subscribe to:
Posts (Atom)